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Abstract: Various diseases are relevant to the abnormal blood flow in tissue. Diffuse 
correlation spectroscopy (DCS) is an emerging technology to extract the blood flow index 
(BFI) from light electric field temporal autocorrelation data. To account for tissue 
heterogeneity and irregular geometry, we developed an innovative DCS algorithm (i.e., the Nth 
order linear algorithm, or simply the NL algorithm) previously, in which the DCS signals are 
fully utilized through iterative linear regressions. Under the framework of NL algorithm, the 
BFI to be extracted is significantly influenced by the linear regression approach adopted. In this 
study, three approaches were proposed and evaluated for performing the iterative linear 
regressions, in order to understand what are the appropriate regression methods for BFI 
estimation. The three methods are least-squared minimization (L2 norm), least-absolute 
minimization (L1 norm) and support vector regression (SVR), where L2 norm is a conventional 
approach to perform linear regression. L1 norm and SVR are the approaches newly introduced 
here to process the DCS data. Computer simulations and the autocorrelation data collected from 
liquid phantom and human tissues are utilized to evaluate the three approaches. The results 
show that the best performance is achieved by the SVR approach in extracting the BFI values, 
with an error rate of 2.23% at 3.0 cm source-detector separation. The L1 norm method gives a 
medium error of 2.81%. In contrast, the L2 norm method leads to the largest error (3.93%) in 
extracting the BFI values. The outcomes derived from this study will be very helpful for the 
tissue blood flow measurements, which is critical for translating the DCS technology to the 
clinic. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Monitoring tissue hemodynamics is important for early disease diagnosis and treatment 
evaluation, since many diseases, such as tumors, ischemic stroke and peripheral artery disease, 
are associated with abnormal blood flow, blood oxygenation or oxygen metabolism. For 
example, the main cause of ischemic stroke is the deficiency of local cerebral perfusion [1]. 
Tumors are characterized by the high tissue blood flow and oxygen metabolism as well as low 
tissue blood oxygen level [2,3]. Sleep apnea leads to large fluctuation in the cerebral blood flow 
[4]. Although various modalities are available for tissue hemodynamic detection, near-infrared 
diffuse optical spectroscopy (NIRS) has gained wide applications in numerous physiological 
and clinical studies, due to portability, low cost and relatively larger penetration depth (up to 
several centimeters). NIRS utilizes the light intensity collected from the tissue to estimate the 
oxy- and deoxy-hemoglobin concentrations ([HbO2] and [Hb]), subsequently calculating tissue 
blood oxygen saturation (StO2) [5,6]. The blood oxygenation only reflects the static balance 
between oxygen supply and consumption. Blood flow is a dynamic parameter indicating how 
fast the oxygen is transported to biological tissues, and it is sensitive to many diseases. In recent 
years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been 
rapidly developed [3,7–11]. Unlike the other NIRS technology in which the signals of light 
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intensity are mainly utilized, DCS quantifies the light electric field temporal autocorrelation 
function at multiple delay times, which is sensitive to the moving scattering, for measurement 
of blood flow at microvasculature level [9,11]. The tissue blood flow measurement by DCS 
technology has been validated through comparing with other modalities [12–15]. Additionally, 
this technology has been applied in clinic for early diagnosis and therapeutic monitoring of 
various diseases, such as ischemic stroke [1,8,13,16–18], tumor [2,3,7,19–21], obstructive 
sleep apnea [4], and surgical flap [22]. In some clinical applications, the DCS is combined with 
NIRS, for the purpose of simultaneously measuring blood flow and oxygenation. The 
combination of blood flow and oxygenation permits the calculation of the tissue oxygen 
consumption rate [23,24]. Additionally, the extension of DCS technology to the blood flow 
imaging, i.e., diffuse correlation tomography (DCT), has been developed over years [25–27]. 

Conventionally, the blood flow index (BFI) is extracted through fitting the experimental 
DCS/DCT data with an analytical solution to the diffusion correlation equation (a sort of partial 
differential equations-PDE), and a semi-infinite or layered slab geometry is often assumed 
[9,28]. In recent years, several algorithms were proposed, such as the optimal DCS data 
selection [25], the simultaneously fitting of multiple parameters for DCS curves [29], and the 
“modified Beer Lambert law” for DCS [30]. These algorithms, however, are all based on the 
analytical solution, which requires regular geometries. 

Most of the biological tissues, however, are heterogeneous and with irregular geometry, 
particularly for the small tissue with large curvatures. For DCT, a finite element method (FEM) 
was proposed to reflect the tissue heterogeneity and irregular geometry [26]. Nevertheless, 
FEM is unable to fully utilize the optical signals and thus susceptible to the data noise. In a 
word, tissue heterogeneity, irregular geometry, as well as full data utilization cannot be 
simultaneously taken into consideration by either the analytical solution or FEM method. 

To overcome the limitations, we proposed an algorithm, namely, the Nth-order linear (NL) 
algorithm [31,32]. Unlike the analytical solution or FEM, the NL algorithm does not seek for 
the solution to PDE. Instead, it combines the integral form of g1(τ) with a N-th order Taylor 
polynomial. Besides, the tissue heterogeneity and irregular geometry are taken into 
consideration through the information of photon path lengths. The accuracy of NL algorithm 
can be validated through computer simulations and experimental animals [31,32]. Very 
recently, we extended the NL algorithm for use in DCT [27], and the computer simulations on a 
realistic human head verified its capability in accurate and robust reconstruction of blood flow 
imaging. For both DCS and DCT, a key step to implement the NL algorithm is the linear 
regression, from which the autocorrelation data at multiple times are fully utilized. 

In practice, all measured data are with noise, and denoising is a critical process in order to 
extract accurate BFI. Least-squared minimization (L2 norm) is a widely used approach to 
perform data fitting and linear regression [33], and it was adopted by us and other researchers in 
previous DCS/DCT data analyses, regardless of the algorithms being adopted (analytical 
solution, FEM and NL algorithm) [9,26,31,32]. However, the L2 norm is severely affected by 
the data points with large derivations to the regression line, particularly in low signal intensity 
and low signal-to-noise ratio (SNR). In recent years, the least-absolute minimization (L1 norm) 
[34] was adopted frequently as a denoising approach for data analysis. Moreover, an algorithm 
in field of machine learning, i.e., support vector regression (SVR), is emerging as an advanced 
approach for data linear regression [35,36]. In this study, for the first time, to the best of our 
knowledge, we explore the L1 norm and SVR methods to DCS, for data denoising through a 
linear regression. The denoising outcomes will be compared with the conventional L2 norm 
approach in the evaluations. All approaches are validated using computer simulation data as 
well as the experimental data collected from liquid phantom. Additionally, we applied the three 
approaches to the human subjects in skeletal muscles and brain for evaluation of their potential 
use in the clinic. 
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2. Methods 
This section starts with an introduction of the DCS instrument and basic principle, followed by 
the NL algorithm for BFI extraction. Then, we present three approaches to execute the linear 
regression, i.e., L2 norm, L1 norm and SVR. The procedures for computer simulations, phantom 
and human experiments, as well as statistical analysis methods, will be described finally. 

2.1 DCS instrument and principle 

The instrument of DCS flowmetry used in this study is similar to those reported in previous 
studies [9,13,22]. Briefly, the instrument mainly consists of a continuous-wave laser (785 nm, 
DL-785-120-SO, Crystalaser, Inc.) at long coherence length (>5m), eight 
single-photon-counting photodiodes (APDs) (SPCM-780-13-FC, Excelitas Inc., Canada), and 
an eight-channel correlator (flex05-8ch, Correlator.com, USA), as shown in Fig. 1(b). Through 
the multi-mode source fiber, long-coherence light from the laser is injected into the tissue. The 
injected photons experience events of absorption and scattering within the tissue, and a portion 
of photons eventually escape out the tissue and were collected by single-mode detector fibers 
placed several centimeters (ρ) away from the source fiber. The collected photons are counted 
by the APDs and the outputs are taken by an 8-channel correlator board. From the APD outputs 
(i.e., light intensity), the light intensity temporal autocorrelation function (G2(τ)) is calculated 
by the correlator board. The normalized G2(τ) function (i.e., g2(τ)) is related to the light electric 
field temporal autocorrelation (g1(τ)) via the Siegert relation [9]. The decay rate of g1(τ) is 
closely related to the moving of red blood cells (i.e., blood flow). For instance, a faster decay in 
g1(τ) curve indicates a larger blood flow value. The value of blood flow can be quantified from 
the fact that the unnormalized g1(τ) function (i.e., G1(τ)) satisfies the correlation diffusion 
equation (a form of partial differential equation). Conventionally, with a specific boundary 
condition (e.g., the semi-infinite), the blood flow index (BFI) value is extracted analytically 
from the diffusion correlation equation. In this study, the NL algorithm proposed by us (see 
Section 2.2), which reflects tissue arbitrary geometry and heterogeneity, was used to extract 
BFI values (Fig. 1(a)). 

 

Fig. 1. (a) The schematic diagram of DCS components. (b) The instrument of 8-channel DCS 
flowmetry, wherein the DCS laser (Source) and eight detectors (D1-D8) are labeled on the front 
panel of the instrument. 

2.2 Nth-linear (NL) algorithm for DCS flow extraction 

As mentioned earlier, the NL algorithm does not seek for the solution to diffusion correlation 
equation. Instead, this algorithm is derived from the integral of temporal autocorrelation 
function g1(τ) over individual photons, in the following expression [31]: 
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where P(s) is the normalized distribution of detected photon path length s, k0 is the wave vector 
magnitude of the light in the medium, *l is the photon random-walk step length, which is equal 

to '1 sμ ( '
sμ is the reduced scattering coefficient), and τ is the delay time of autocorrelation 

function. 2 ( )r τΔ  represents the mean-square displacement of the moving scatterers. Because 

the diffuse model, i.e., <Δr2(τ)> = 6DBτ, has been found to well fit experimental data over a 
wide range of tissues or organs [9,28], this flow model was adopted in this study. Here, DB is 
the effective diffusion coefficient. A factor α is added to 2 ( )r τΔ  (i.e., 2 ( ) 6 Br Dτ α τ< Δ >= ) to 

account for the fact that not all scatterers are “moving” in the tissue; α is the ratio of “moving” 
scatterers to the total number of scatterers. The combined term, αDB, is referred to as BFI in 
biological tissues. 

When combing the Eq. (1) with the N-order Taylor polynomial of g1(τ) function, and 
performing some mathematical derivations, we reach the following approximations in the case 
that τ is sufficient small: 
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Equation (2) and (3) are referred to as the first-order and Nth-order linear algorithm 

respectively. is can be determined from the Monte Carlo (MC) simulation of photon 
migrations in the tissue. 

For the first-order approximation (N = 1), the unknown variable αDB only appear in the 
right-hand side of Eq. (2). Hence, Eq. (2) can be rewritten as follows: 
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where 
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The term Z ⋅ αDB
(1) is the slope of linear regression between τ and g1(τ)-1, which is written 

as: 
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Once the slope (Sl) is determined from τ and g1(τ)-1 data via linear regression, the 
unknown(αDB

(1)) can be calculated from (7) with NL algorithm. 
For the Nth-order approximation (N>1) in Eq. (3), which has unknown αDB on both sides, 

αDB can be derived iteratively using following equations: 
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BZ D Sl Nα⋅ = ≥  (9) 

We defined the left sides of Eq. (5) and Eq. (8) as the “modified autocorrelation decays” 
(MADs). It can be seen from Eq. (5) and Eq. (8) that determination of the slope (Sl) via iterative 
linear regression is an essential step to extract the BFI (i.e., αDB) from the autocorrelation data. 

The mathematical forms of NL algorithm for heterogeneous tissues are similar to those of 
homogeneous tissues (i.e., Eqs. (2)-(9)), except that multiple slopes (Sl) from different S-D 
pairs need to be calculated. The slopes (Sl) are used to calculate the BFI values at each tissue 
type by solving the linear equation system. 

To simplify Eq. (5) and Eq. (8), we obtain the expression of linear regression model: 

 y kx m= +  (10) 

where k is the slope value of linear regression. m is the intercept. Here x represents the delay 
time τ, and y represents the modified autocorrelation decay (MAD). 

2.3 Least-squared (L2 norm minimization) algorithm 

As a conventional and easy-implemented approach, L2 norm has been used mostly widely in 
linear regression. 

According to the definition, the loss function of L2 norm is [33]: 
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where (x1,y1), (x2,y2),…,(xi,yi), xi,yi∈R are the data points collected from DCS measurements. 
Since L (y, f(x)) is a differentiable function, its minimization could be reached by solving 

the following linear equations. i.e. 
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When using L2 norm, the slope value is largely influenced more severely by the data points 
far away from the regression line than the data points that are close to or within the regression 
line. Because the noise more often deviates the true data points from the regression line, those 
noisy data points have relatively larger squared value of the distance, thus having more weight 
to determine the slope value than the other points with less noise, and thus the method is not 
preferred. 

2.4 Least-absolute (L1 Norm) minimization algorithm 

L1 norm aims to reduce the weight of noise data, and its algorithm loss function is defined as 
[34]: 

 min
1

( , ( )) | ( ) |
N

i i
i

L y f x y kx m
=

= − +  (13) 

From Eq. (13), the weight of noise data would be substantially reduced by decreasing the 
norm order from 2 to 1. In principle, therefore, the L1 norm could generate more accurate and 
robust slope estimation. The primary challenge for this approach is how to minimize the L(y, 
f(x)), since this function is non-differentiable, or in other words, L(y, f(x)) is a non-smooth 
optimization. In this paper, a linear regression model analysis under the least-absolute deviation 
criterion is analyzed and transformed into a linear programming problem. 

First, we establish a linear regression model in the form of matrix based on DCS data sets: 

 1, X[ ]y W δ= +  (14) 
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Here, ‘1’ denotes an n-dimensional column vector at the identical value of 1, and W is the 
regression coefficient vector, δ ~N (0, σ2I). 

The solution to the above model is to solve the following unconstrained non-differentiable 
optimization problem: 

 
1

min [1, ]y X W−  (15) 

In other words, we aim to derive the minimal solution of the L1 norm of the overdetermined 
linear equations: 

 [ ]1, X  W y=  (16) 

Let A = [1, X], c = y, W can be treated as the difference of two non-negative p + 
1dimensional column vectors u, v (i.e., W = u-v). Meanwhile, ξ, η are set as non-negative n 
dimensional column vectors, then Eq. (16) becomes a compatible linear equation system. 

 A( ) ( )u v cξ η− + − =  (17) 

Hence, Eq. (15) becomes the problem of obtaining the minimum of 
1

ξ η− . Let 0p + 1, 1n 

denotes the column vectors which contains P + 1 zero elements and n elements at value of 1, 
respectively, this problem is further transformed into a linear programming problem: 
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Using the algorithm of solving linear programming problems, we can get the optimal 

solution ],,,[ ****
TTTT vu ηξ  of the problem (18). Eventually, we obtain the optimal solution W = 

** vu −  for the problem (14). 

2.5 Linear ε-support vector regression (SVR) algorithm 

The SVR, a powerful algorithm in the field of machine learning, was derived from the principle 
of SVM (support vector machine). The SVM is usually used for classification problems, while 
the SVR is mainly for regression. 

In SVR at a tolerance value of ε, the regression function of linear ε-SVR is written as: 

 ( , )f x w w x b= ⋅ +  (19) 

where w is the weight vector; b is a threshold value. Its accuracy is measured by the loss 
function. Regression estimates can be obtained by minimization of the empirical risk on the 
DCS data. Unlike the traditional loss functions used for minimization of the empirical risk (e.g., 
squared error in L2 norm) and absolute value error (e.g., L1 norm), the SVR uses a new type of 
loss function, namely, ε-insensitive loss function, as depicted below [35,36]: 

 
0 , | ( ) |
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| ( ) | - ,

y g x
f x y g x

y g x others

ε
ε

− ≤
=  −

 (20) 

Note that with the ε-insensitive loss function, when the deviations between the measured 
value y and the predicted value g(x) do not exceed the tolerance of ε value, the loss function 
value is zero. In other words, even if the predicted value g(x) and the measured value y are not 
equal, there is no loss at this point, as long as the difference is less than the tolerance value of ε. 

The optimization problem of ε-support vector regression can be expressed as: 
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where C is a regularization parameter (positive constant). The optimization problem of Eq. (21) 
can be transformed into a dual problem by the Lagrange's function, and its solution is given by 
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where the dual variables are subject to constraints *
i0 , i Cα α≤ ≤ . Here we applied the linear 

ε-SVR algorithm to establish a linear model. The mathematical procedures to perform the 
ε-linear SVR algorithm are described as follows: 

Step1. Establish DCS data sets to perform linear regression: 
T = [(x1, y1), (x2, y2), …, (xN, yN)], s.t. (x1, x2, …, xN)T∈X = RN ; yi∈Y = R, i = 1,2,…N. 
Step2. Select appropriate values of parameter ε>0 and the penalty parameter C>0. 
Step3.Construct and solve the convex quadratic programming problem (CQP) 
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Step 5. Construct a decision function *

1

( ) ( )( , )
N

i i i
i

f x x x bα α
=

= − + . 

For Step 2, the value selection of parameter ε and penalty parameter C are implemented as 
follows [37]: 

 C max(| 3 |,| 3 |)y yy yσ σ= + −  (23) 

where y  and yσ are the mean and the standard deviation of the y values of MADs data. 

Parameter C represents the trade-off between the model complexity and the degree of 
deviations (i.e., larger than ε) to be tolerated in formula (21). 

Recent studies have shown that the value of ε should be proportional to the input noise level, 
according to the following equation [38]. 

 
ln

3
n

n
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where n is the size of DCS data. 
Once the linear model via linear ε-SVR algorithm was established, we determined the slope 

of the linear regression by any two points ( , ), ( , )m m n nx y x y in the linear model, as follows: 
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Finally, regression equation is obtained: 

 ( )m my k x y k x= ⋅ + − ⋅  (26) 

2.6 Tissue model and generation of autocorrelation data 

A rectangular-shape geometrical model, at a size of 20 cm × 20 cm × 20 cm was established as 
the tissue model for computer simulation of blood flow. This size of geometrical model is large 
enough to cover the optical probe (up to 3 cm source-detector separation) as well as the light 
penetration depth (up to 2 cm). A package of open-source codes, MCVM (Monte Carlo 
Modeling of Photon Migration in Voxelized Media) [39], was utilized to perform Monte Carlo 
(MC) simulation of light propagation within the tissue. A total of 10 million photon packets 
were injected from laser source to the tissue model. Primary outcomes from MC simulation at 
2.5 cm source-detector (S-D) separation were used as inputs to the following equation (i.e., the 
discrete form of Eq. (1)). 

 ‘2
1 0

1 1

( ) ( ) exp( 2 ( ) )
Q n

sB
q i

Dg w q k s qτ τ μα
= =

= ⋅ − ⋅ ⋅   (27) 

where the optical properties have known parameter values. w(q) is the weight (i.e., the 
remaining ratio of the escaping photons) of the qth photon packet; and s(q) is path length of the 
qth photon in tissue. Both the weight and photon path length were derived from light MC 
simulations. 

In actual measurements, noise is unavoidable. To reflect the realistic experiments, 
appropriate level of noise was added to the autocorrelation function g1(τ) at each delay time (τ). 
The levels of noise were determined by the photon count rate (i.e., light intensity) which 
depended on tissue optical properties and S-D separations. A larger separation resulted in a 
lower light intensity, leading to a larger noise, specified by the following equation [29,40]: 
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where T is the correlator bin time, Γ is the decay rate, <n> = IT, and I is the detected photon 
count rate. σ(τ) is the standard deviation of the g1(τ) noise. 

The photon count rate (i.e., light intensity) for noise model in computer simulations were set 
as: 1500 to 30 kcps, corresponding to the four S-D separations (1.5 to 3.0 cm), respectively. 
Optical properties were set as: μa = 0.05 cm−1 and μs

’ = 8.0 cm−1. By combining the optical 
properties, Monte Carlo simulation outcomes and the assumed BFI (i.e., αDB = 1.2 × 10−8 
cm2/s), we performed the repeated computer simulations according to Eq. (27), generating a 
total of 1000 autocorrelation curves g1(τ) with noise. 

2.7 Phantom experiment 

Setup of the phantom experiment is to mimic tissue blood flow. The phantom procedures are 
similar to those reported in previous studies [9,29]. Briefly, the liquid phantom, contained in a 
rectangular aquarium (Fig. 2(b)), is comprised of distilled water, India ink and intralipid 
solution. India ink (Chenguang Inc., China) is used to manipulate the absorption coefficient of 
the phantom, ( )aμ λ , where λ is the laser wavelength (i.e., 785 nm). India ink is firstly diluted to 

1% solution in distilled water. The ( )aμ λ of 1% ink solution is measured with a spectrometer 

(QE-Pro, Ocean Optics Inc., USA). Intralipid (30% solution, Huarui Inc., China), measured 
with a frequency-domain oximetry instrument (Imagent, ISS Inc., USA), provides the reduced 
scattering coefficient ( ' ( )sμ λ ) of the phantom. The intralipid particles also mimic the motions 
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of red blood cells, i.e., the blood flow at microvasculature level. Appropriate amount of 
distilled water, as well as the 1% India ink and intralipid solution with known values 
of ( )aμ λ and ' ( )sμ λ , were added to the rectangular aquarium, leading to the target values of 

optical properties ( ( )aμ λ  = 0.05 cm−1 and ' ( )sμ λ  = 8.0 cm−1). For data acquisitions, the DCS 

source and detector fibers, both confined in a black foam at different separations (i.e., 1.5 cm, 
2.0 cm, 2.5 cm and 3.0 cm), were placed on the phantom surface (Fig. 2(a)). The other end of 
fibers were connected to the laser and four detectors in instrument of DCS flowmetry 
respectively, leaving the other four detectors in the DCS instrument unconnected. The 
autocorrelation data were collected from the liquid phantom for a continuous period of 20 
minutes, at a sample time of 1.2 seconds. As such, a total of 1000 autocorrelation curves were 
obtained from the phantom experiment. 

 

Fig. 2. (a). A custom-made fiber-optic probe at the S-D separations of 1.5 cm, 2.0 cm, 2.5 cm and 
3.0 cm, respectively. (b) Configuration for phantom experiments. 

2.8 Manipulation protocol on human subjects 

A total of ten healthy volunteers were recruited for the human experiments on leg muscle and 
brain. The study protocols were approved by the Ethics Committee of the North University of 
China, the consent forms were signed by all subjects. For human experiments, the emitted light 
is expanded in diffusive manner, permitting the illuminated area to reach 4 mm diameter over 
the skin. As thus, the power density delivered to tissue surface is below the safety limit of 4 
mW/mm2 [41]. Other fiber configuration for human experiments is the same as for phantom 
experiments. The optical properties of in vivo tissue were set as: μa = 0.10 cm−1 and μs

’ = 8.0 
cm−1 respectively, according to the literature [9,42]. At the beginning of leg muscle 
measurement, the subject lied on a table in supine posture with both legs in relax status. A cuff 
tourniquet was placed on the upper right leg, and an optical probe (with four S-D separations in 
range of 1.5 to 3.0 cm) was taped on the surface of calf muscle. A 3-minute DCS data were 
collected by the DCS device as the baseline value. The cuff tourniquet was then automatically 
inflated by 230 mmHg air pressure, with the purpose of temporarily blocking the blood into calf 
muscle. After 3-minute cuff inflation, the cuff tourniquet was deflated, and the DCS blood flow 
data during a recovery period were collected for another 5 minutes, reaching the end of 
measurement. 

Thereafter, the ten subjects received cerebral blood flow measurement by DCS flowmetry, 
with optical probe on forehead. For this measurement, the subjects also lied on a table in supine 
posture. The DCS data were longitudinally collected for 3 minutes, without manipulation of 
cerebral blood flow. This protocol aims to investigate the robustness of BFI measured in the 
brain, which represents the tissue with irregular geometry and large curvature. 

2.9 Evaluation criteria 

For computer simulations, phantom and human experiments, the autocorrelation curves g1(τ) 
were analyzed with the NL algorithm with the three approaches (L2 norm, L1 norm and SVR), 
from which the BFIs were extracted. By using the known value of BFI (i.e., αDB,0 = 1.2 × 10−8 
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cm2/s) preset in computer simulations, the error between the true and reconstructed BFIs was 
quantified, as follows: 

 0 2

0
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n αD
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=   (29) 

where the RMSE denotes the root-mean squared error; i
BDα  and ,0

i
BDα are the reconstructed 

and true BFIs, respectively. n is the number of samples. A small RMSE value indicates that the 
reconstructed BFI value is close to the true one. 

In addition to the accuracy, the measurement robustness is defined in below form: 

 D ( D ) ( ) / ( D )B B BCV meanα σ α α=  (30) 

where the ‘σ’ represents the standard deviation of the variable. For computer simulation and 
phantom experiment wherein no flow changes were manipulated, we used CV values to 
compare the robustness of the three approaches. A smaller CV value indicates that the 
reconstructed flow is more stable. In addition, descriptive statistics will be used to summarize 
the average results, including the mean, standard derivation, minimum and maximum. For 
human experiments of cuff occlusion wherein the BFI was manipulated to change, we used 
ANOVA test to compare the response differences produced by the three approaches. 

3. Results 
In this section, the results from computer simulations, phantom experiments and human 
subjects were presented. The outcomes of linear regressions by L2 norm, L1 norm and SVR, as 
well as their derived BFI, were compared. All the computing procedures were performed on a 
desktop PC (Lenovo ThinkCentre M8600t), with 3.4G Hz CPU and 16G memory. 

3.1 Results of computer simulations 

Figure 3(a) shows the autocorrelation functions g1(τ) with noise generated by the computer 
simulations at four S-D separations, respectively. The g1(τ) noise matches the real data noise 
determined by the photon count rate (1500 to 30 kcps) [27,29] at four S-D separations (1.5 to 
3.0 cm). It is clearly seen that a larger S-D separation leads to more noise in the autocorrelation 
functions. At the largest S-D separation (i.e., 3.0 cm), the linear regression processed by L2 
norm, L1 norm and SVR were presented in Fig. 3(c) through 3(e). The DCS data with the delay 
time in the range of 0.2 30 sτ μ≤ ≤ (79 data points) were used for all linear regressions. As 

illustrated, the regression line was found to be substantially affected by noisy data points, when 
L2 norm approach was adopted. This influence was significantly alleviated through using L1 
norm approach. With the SVR approach, the data points with large noise appear to be totally 
excluded in the linear regression, which enhances the accuracy of data analysis. 
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Fig. 3. Autocorrelation functions g1(τ) with noise generated by the computer simulations at four 
S-D separations (a), the g1(τ) noise (b), and the fifth-order linear regression lines ((c)-(e)) by L2 
norm, L1 norm and SVR, respectively. The two red lines in Fig. 3(e) denote the decision plane in 
the SVR approach. 

Figure 4(a) shows the time course of BFI values (50 data points) extracted by the fifth-order 
NL algorithm, in which the L2 norm, L1 norm and SVR are used respectively. As is clearly seen, 
the L2 norm approach causes a large fluctuation around the BFI baseline. By contrast, the BFI 
value extracted by the L1 norm is closer to the BFI baseline. The SVR approach can generate 
the best BFI curve visually, with the minimal inconsistence among different data points. 

Moreover, the RMSE values calculated by the L2 norm, L1 norm and SVR are presented in 
Fig. 4(b). The RMSE was found to be positively influenced by the S-D separation, which is 
anticipated, because the larger S-D separation leads to a lower signal-to-noise ratio (SNR). At 
any S-D separations, the SVR performs the best in extracting the BFI values, with the RMSE 
value in range from 0.42% to 2.23% (i.e., 1.5 cm to 3.0 cm S-D separations). In contrast, the 
conventional L2 norm method results in the largest RMSE. At the 3.0 cm S-D separation, the 
RMSE value reached the largest value (3.93%). 

Similarly, at the same S-D separations, SVR generated the smallest value of CV. For 
example, the CV value was 2.66% at 3.0 cm S-D separation when SVR was adopted, while this 
value was increased to 4.78% when the L2 norm method was adopted. 

 

Fig. 4. (a) The BFI (i.e., αDB) values of 50 samples reconstructed by L2 norm, L1 norm and SVR 
approaches respectively in the computer simulations. (b) The RMSE values for 1.5,2.0,2.5 and 
3.0 cm S-D separations, when L2 norm, L1 norm and SVR were used, respectively. For any of the 
three approaches, the NL algorithm was performed at fifth-order. 

3.2 Results of phantom experiments 

The processing methods for phantom experiment are identical as those for computer 
simulations, except the optical data were collected from liquid phantom by DCS flowmetry, 
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rather than generated by the computer. The DCS data collected from the phantom experiment 
match well with the simulated DCS data, in both noise intensity and distribution. 

Similar to what we have found in computer simulations, the time course of BFI data points 
is more scattered by the L2 norm approach, while the data points generated by the L1 norm and 
SVR approaches are more concentrated (Fig. 5(a)). Among these approaches, the BFI values 
yielded by the SVR approach appears to be most stable. At the largest S-D separation (i.e.,3.0 
cm), average BFI values are 1.47, 1.49 and 1.51 × 10−8 cm2/s by L2 norm, L1 norm and SVR, 
respectively. These values are in agreement with the reported values (0.4~2.0 × 10−8 cm2/s 
[29]). Moreover, the CV values generated by L2 norm, L1 norm and SVR are 12.16%, 7.34% 
and 5.82%, respectively (Fig. 5(b)). 

 

Fig. 5. (a) The BFI (i.e., αDB) values of 50 samples reconstructed by L2 norm, L1 norm and SVR 
approaches respectively in the phantom experiments. (b) the CV values for 1.5,2.0,2.5 and 
3.0cm S-D separations, when L2 norm, L1 norm and SVR were used, respectively. For any of the 
three approaches, the NL algorithm was performed at fifth-order. 

3.3 Results of experiments on human subjects 

Figure 6 shows the BFI measurements from a representative subject as well as the average 
changes over all ten subjects during the manipulation protocol of cuff occlusion, wherein the 
DCS signals collected from the largest S-D separation (i.e., 3.0 cm) were used for data 
analyses. The blood flow (αDB) data points were normalized to the mean value of the 30-second 
baseline before the cuff occlusion. With any of the three approaches (L2 norm, L1 norm and 
SVR), the time course of BFI exhibits typical response to cuff occlusion. Specifically, the 
occlusion of femoral artery causes immediate reduction in calf blood flow, reaching its minimal 
value rapidly. There are immediate hyperemic responses following the deflation of cuff 
tourniquet, causing a rapid increase to its peak value (486%). Thereafter, the BFI is recovered 
towards its baseline gradually. Nevertheless, SVR yields the smoothest time-course curve of 
blood flow, when compared to the L2 norm and L1 norm. On average (n = 10), the peak rBF 
following the cuff deflation was 354 ± 75%, 361 ± 68%, and 359 ± 57%, by the L2 norm, L1 
norm and SVR, respectively, when comparing with their baselines (assigning 100%), while 
their time-to-peak are 35.6 ± 10.7, 36.2 ± 9.3, and 36.9 ± 8.8 seconds, respectively. According 
to the ANOVA analysis, no significant difference (p>0.05) was found among the three 
approaches in peak rBF and time-to-peak of the ten subjects. However, the influence of 
denoising approaches on the individual flow response is still remarkable. 
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Fig. 6. (a) Time-course of the relative blood flow (rBF) data points reconstructed by L2 norm, L1 
norm and SVR approaches respectively, from a representative subject. (b) The average changes 
(mean ± standard error) over all ten subjects during the manipulation protocol of cuff occlusion. 

For the human brain study, the CV values of BFI measured by L2 norm, L1 norm and SVR 
approaches were 11.0 ± 1.3%, 6.5 ± 0.6%, 3.8 ± 0.3%, respectively. The order of CV values 
(i.e., from the largest to smallest) is consistent with those derived from computer simulations 
and phantom experiments. 

4. Discussion and conclusions 
As an emerging technology, DCS/DCT has been attracting more attentions in recent years, for 
the capability to detect microvasculature blood flow with advantages of noninvasiveness, fast 
and low cost. In addition to the hardware setup (e.g., laser, detector, digital correlator, etc.) and 
design of the optical probe, the algorithms for data processing are critical, which remarkably 
influences the quality of blood flow values extracted from the optical signals. In all previous 
DCS/DCT algorithms, either analytical solution or FEM, it is difficult to account for irregular 
geometry and tissue heterogeneity, meanwhile utilizing the full autocorrelation data. For the 
purpose of taking all these factors into consideration, we proposed the NL algorithm and 
validated its accuracy in extracting the BFI through computer simulations and animal 
experiments [31,32]. The unique merit of the NL algorithm makes it possible to fully utilize the 
autocorrelation data through iterative linear regressions, which are considered as a high 
efficiency denoising approach. In contrast, only the autocorrelation data at single delay time (τ) 
were used in the previous analytical solution or FEM approach. Although a few denoising 
methods, such as high-pass filter and data fitting, were adopted in analytical solution and FEM. 
Those mathematical processes are, in principle, less relevant to the DCS/DCT theory. 

Linear regression is a key step to implement the NL algorithm, with the aim to minimize the 
discrepancy between the theoretical data points (i.e., on the regression line) and the measured 
data points. This ‘discrepancy’ is often quantified by the least-squared errors of all data (i.e., L2 
norm), due to the simple procedure for computer implementations. Therefore, the L2 norm 
method is solely used at present for DCS/DCT data fitting (analytical solution and FEM) as 
well as the linear regression (NL algorithm), without exception. 

With the advances in calculating technique and computer capacity, more methods to match 
the discrepancy between the mathematical model and real data were proposed. For example, 
the L1 norm approach, which was previously assumed hard to implement computationally, has 
gained popularity in recent years for data fitting. Additionally, the SVR, which is derived from 
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the principle of SVM, has been used widely for a linear or nonlinear regression. Hence, we 
introduce these advanced methods, for the first time, into DCS data analysis. For a complete 
evaluation, the L2 norm, L1 norm and SVR are compared in the same data set through computer 
simulations, liquid phantom and human subject experiments. 

The computer simulations were carried out because the BFI can be set as known values 
(e.g., i.e., αDB = 1.2 × 10−8 cm2/s), allowing for objectively evaluating the accuracy of the three 
approaches. The liquid phantom, equipped with well-controlled experimental setup, provides 
stable BFI value, from which the robustness of the three approaches can be evaluated. The 
short-term cuff occlusion on thigh muscles were selected as human subject manipulation, since 
this protocol is widely adopted in many physiological studies. Moreover, typical muscle blood 
flow responses (ischemia and hyperemia) are induced during the cuff inflation and deflation, 
allowing us to quantify the BFI changes for the three approaches. 

The L2 norm and L1 norm have similar mathematical expression in the optimization 
problems of data fitting, except a different exponential order. With either of the two 
approaches, all the samples data are included to reconstruct the regression line. For L2 norm, the 
least-squared requirement pushes the regression line towards the data points with larger 
deviations, which, however, are often the noise data. The L1 norm method substantially 
alleviates this problem through decreasing the weight (i.e., from 2 to 1) of data mismatch, thus 
generating a more accurate linear regression. Both L2 norm and L1 norm have the limit that all 
data are involved in determining the regression line, including the noise. By introducing the 
support vector regression or SVR, the noisy data with larger deviations are efficiently excluded, 
hence promoting the accuracy and robustness of the regression lines. 

The outcomes derived from both computer simulations and phantom experiments 
demonstrate the best performance of SVR approach in extracting the BFI values, with RMSE of 
2.23% and CV of 2.66%, respectively, at the largest separation (i.e.,3.0 cm). Likewise, the 
outcomes derived from all other S-D separations support the conclusion drawn from the largest 
S-D separation (data were not shown). 

In addition to the accuracy and robustness, the cost of computation is also a factor affecting 
the application of data fitting approach to practical applications, particularly for real-time 
monitoring. In this study, the computing time to extract a BFI value is 6.48, 28.07 and 52.93 
seconds, when using L2 norm, L1 norm and SVR, respectively. With current computational 
capacity, it is difficult to realize the real-time blood flow measurement with the NL algorithm, 
when compared with conventional approach of normal fitting. However, in many situations 
such as physiological research, real-time measurement of blood flow is not mandatory. In those 
situations, offline data analysis with higher accuracy might work better for the research 
purpose. Nevertheless, shorten the computation time, especially for the complicated SVR 
approach, is a future task. 

This study investigates the three approaches which are widely representative, and then, for 
the first time, evaluates them for iterative linear regression in DCS blood flow measurement. In 
addition to the linear regression that is required by the NL algorithm, data fitting is also critical 
for other DCS/DCT algorithms, i.e., the analytical solution and FEM. In those algorithms, the 
L2 norm was exceptionally adopted for data fitting. Hence, the methods proposed in this study 
(i.e., L1 norm and SVR) have general implication for future DCS/DCT studies. Nowadays, 
many methods for data processing and classifications (i.e., deep learning) are rapidly developed 
and would be applicable to DCS/DCT blood flow measurement and imaging, which will be a 
subject of our future research. Additionally, future research will focus on how to apply the 
denoising approaches (particularly, the SVR approach) to various physiological and clinical 
situations, including those with heterogeneous tissues and large curvature. 

To conclude, two approaches of data fitting (L1 norm and SVR) for DCS blood flow 
measurement, have been proposed in this study. Both approaches have been compared with the 
conventional approach (i.e., the L2 norm) through computer simulations, liquid phantom and 
human subject experiments. The results have demonstrated the advantages of the proposed 
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approaches over the conventional one in both simulation and human experiment tests. Among 
the three methods, the SVR performed the best in extracting the blood flow information, with 
minimal errors and variations. This study promotes the application of an advanced data fitting 
approach to the clinic, which requires accurate and robust measurements of blood flow by the 
DCS/DCT technology. 
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